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We study the efficiency of a two-channel reaction between two walkers on a finite one-dimensional periodic
lattice. The walkers perform a combination of synchronous and asynchronous jumps on the lattice and react
instantaneously when they meet at the same site �first channel� or upon position exchange �second channel�.
We develop a method based on a conditional first-passage problem to obtain exact results for the mean number
of time steps needed for the reaction to take place as well as for higher order moments. Previous results
obtained in the framework of a difference equation approach are fully confirmed, including the existence of a
parity effect. For even lattices the maximum efficiency corresponds to a mixture of synchronous events and a
small amount of asynchronous events, while for odd lattices the reaction time is minimized by a purely
synchronous process. We provide an intuitive explanation for this behavior. In addition, we give explicit
expressions for the variance of the reaction time. The latter displays a similar even-odd behavior, suggesting
that the parity effect extends to higher order moments.
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I. INTRODUCTION

In experimental systems there is always a finite discreti-
zation of the time window used for measurements. Thus, the
degree of synchronicity for the dynamics of the different
system constituents may vary when the size of the time win-
dow is changed, either intentionally or accidentally as a re-
sult of random fluctuations in the clock mechanism. But even
for a fixed time resolution there may be intrinsic features of
the experimental system that lead to the coexistence of syn-
chronous and asynchronous events in the course of the evo-
lution. Consider, e.g., diffusion of an ensemble of identical
particles in a disordered or a randomly fluctuating medium
�1,2�. The diffusivity of a particle will then be different de-
pending on its location, and this will lead to the coexistence
of different characteristic time scales in the system, resulting
in partial desynchronization for the dynamics of its constitu-
ents.

Recently, the author and co-workers used a simplified lat-
tice version of this problem to study the role of synchronicity
on the efficiency of a diffusion-controlled two-channel reac-
tion between two particles �3�. Here, the parameter chosen
for the characterization of the reaction efficiency is the mean
number of time steps to reaction. The effect of synchronicity
was investigated by studying how this quantity is affected by
the interplay between the transport dynamics and the geo-
metric characteristics of the lattice, i.e., size, dimensionality,
and boundary conditions. Finite size effects were found to
play an important role, thus emphasizing the relevance of
geometric constraints for systems with a small number of
constituents. On the other hand, a variety of interesting prob-
lems in statistical physics may be recast in terms of a random
walk in a lattice of a small size. An example thereof is a
family of ruin problems where the capital of each gambler is
typically a small number �3,4�.

In Ref. �3� the analytic results for the one-dimensional
�1D� case were based on a difference equation approach,
whereas numerical simulations were used in higher dimen-
sions. However, it is also instructive to compute the mean
reaction time for this problem by other methods, e.g., ap-
proaches based on the theory of finite Markov processes
�5–7� and on generating function techniques �8�. The first
method has the advantage of being applicable in higher di-
mensions and to systems lacking translational invariance
�e.g., with reflecting boundaries�, while the second empha-
sizes the correspondence between diffusion-controlled reac-
tions and first-passage problems �9�. In this paper, we shall
apply the latter to determine the mean number of time steps
necessary for the reaction to take place as well as the vari-
ance of this quantity. An important advantage of this ap-
proach is that the variance and higher order moments can be
computed by a straightforward differentiation of the relevant
generating function, as opposed to the method of difference
equations, where moments are coupled to each other via a
hierarchy of equations �3�.

The work plan is as follows. In Sec. II we introduce the
model and its reduced representation in a comoving refer-
ence frame. Section III introduces the generating function
approach to compute the reaction time and higher order mo-
ments. For completeness, we first present the standard for-
malism to deal with some simple cases where only a single
reaction channel is active. We then treat the general case,
which is solved in two stages. First, we show that our model
is equivalent to a model with a relaxed collision rule and
then we solve for the latter. Section IV contains the main
results for the reaction time and its variance. Finally, Sec. V
summarizes the main conclusions.

II. THE MODEL

The system to be studied consists of two coreactants A
and B performing symmetric nearest-neighbor random jumps
on a N-site periodic lattice at discrete time steps. The reac-*Electronic address: eabad@ulb.ac.be
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tants, also termed walkers in what follows, are assumed to
react with each other whenever they meet at the same lattice
site or attempt to exchange positions. Each of such “colli-
sions” results in an instantaneous irreversible reaction. Re-
gardless of the particular outcome of the reaction,1 the mean
reaction time can be identified with the mean number of time
steps elapsed until the collision takes place; the larger this
quantity, the less efficient the reaction will be. Each time step
will be considered to be an elapsed time unit regardless of
the lattice size. In the course of the dynamics, the following
joint events may occur:

�1� With probability p both walkers hop simultaneously to
randomly chosen nearest-neighbor sites �synchronous event�.

�2� With probability 1− p one of the walkers �no matter
whether A or B� hops to a nearest-neighbor site while the
other one remains immobile �asynchronous event�.

Thus, the characteristic parameter p interpolates between
the asynchronous case �p=0� and the case of two simulta-
neously moving walkers �p=1�. Occasionally, we shall refer
to the limiting cases p=0 and p=1 as “the purely asynchro-
nous case” and “the purely synchronous case,” respectively.
The purely asynchronous case was studied by Montroll
�16,17� and Montroll and Weiss �18� in one, two, and three
dimensions. For the particular case of a periodic 1D lattice
they obtained

�n� =
N�N + 1�

6
, �1�

where �n� is the initial-condition-averaged mean reaction
time. Note that in this case the only active reaction channel is
same site occupation �SSO�, since reaction by position ex-
change of the walkers, i.e., by nearest-neighbor crossing
�NNC� is not possible.

However, in the purely synchronous case, both reaction
channels SSO and NNC will be active if the total number of
sites N is odd, otherwise only one channel will be available,
depending on the initial location of the walkers. A conse-
quence is that the analytical expression for �n� in terms of the
size of the 1D lattice depends on the parity of N �6,19�. This
even-odd effect translates mathematically as follows �3�:

�n� = �N�N + 1��N + 2�/�12�N − 1�� for N even,

�N + 1��N + 3�/12 for N odd.
� �2�

In contrast to the above cases, as soon as 0� p�1, reaction
by NNC becomes possible regardless of the value of N and
the initial two-walker configuration.

Due to the translational invariance of the lattice, only the
relative motion of both walkers is relevant for the computa-
tion of the collision time. This has two important conse-
quences. First, it tell us that the physical distinguishability of
the walkers is irrelevant for the solution of the problem. To
emphasize this, the walker labels A and B have been left out
in the scheme displayed in Fig. 1�a�. The second conse-
quence is that it is convenient to choose the reference frame

in such a way that one of the walkers �say B� is at rest. In this
comoving frame, walker A will either hop to a nearest neigh-
bor �with probability 1− p�, hop to a next-to-nearest-neighbor
site �with probability p /2�, or remain immobile �again with
probability p /2� as a result of the rules 1 and 2 prescribed
above. In this one-walker representation, walker B plays the
role of a stationary trap T, as indicated in Fig. 1�b�; any time
walker A reaches or attempts to overcome the site at which
walker B is placed, the instantaneous reaction is triggered
and the dynamics is stopped. In what follows, we shall there-
fore refer to walker B as “the trap” and to walker A as “the
walker” when we work in the comoving frame.

For convenience, let us place the origin �site 0� of the
comoving frame at the initial position of walker A and then
number the remaining sites, say clockwise, from 1 to N−1.
Denoting by jT the coordinate of the site at which the trap is
located, the distance in lattice spacings between both walkers
will be d=min�jT ,N− jT�.

III. GENERATING FUNCTION APPROACH

Our next goal will be to derive an expression for the mean
number of time steps �n� jT

necessary for the reaction to take
place for a given value of the coordinate jT characterizing the
initial condition. As a starting point, we take the equations
that would govern the sojourn probabilities of an unrestricted
walk if there were no interaction between the walker and the
trap. These equations read

Pn+1�j� =
p

4
�Pn�j − 2� + 2Pn�j� + Pn�j + 2��

+
1 − p

2
�Pn�j − 1� + Pn�j + 1�� , �3�

where Pn�j� is the probability to find the walker at a given
site j after n time steps �j may take integer values from 0 and
N−1 and the site addition and subtraction is performed
modulo N�. The first term in the right-hand side �RHS� of
Eqs. �3� is the contribution due to the synchronous events, by
which the walker either remains at rest or it moves two lat-

1The case A+B→ inert is of great historical interest, see, e.g.,
Refs. �10–15�.

FIG. 1. �a� Two-walker system on a seven-site periodic lattice.
Both walkers are represented by black circles. For convenience, the
walker labels A and B have been left out �see text for explanation�.
�b� Equivalent one-walker plus trap system. The trapping site is
denoted by “T.” The arrows in Fig. 1�a� indicate that both walkers
perform a synchronous step. In Fig. 1�b� this corresponds to a two-
site jump of the walker.
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tice sites clockwise or anticlockwise. The second term de-
scribes jumps by one lattice site yielded by the asynchronous
events. In accordance with our definition for the origin, Eq.
�3� must be solved using the deterministic initial condition
P0= �P0�0� ,P0�1� , . . . ,P0�N−1��T= �1,0 , . . . ,0�T.

A. A simple case

The next step is to incorporate the walker-trap interaction
to the above formalism. Let us first consider the situation
where reaction by NNC is precluded. This holds if and only
if N and the walker-trap separation d are even integers. In
this case site jT can be viewed as a reactive site, also termed
“r site” in what follows. Clearly, the mean reaction time will
be given by the mean first-passage time �n� jT

of the walker at
site jT:

�n� jT
= 	

n=1

�

nFn�jT� , �4�

where Fn�j� is the probability of visiting a given site j for the
first time after n time steps. Equation �4� can be expressed as

�n� jT
= 
 �

�z
F�jT,z�


z=1
, �5�

where F�j ,z��	n=0
� Fn�j�zn is the generating function of the

first-passage probabilities Fn�j� and the limit z→1 is taken
from below. On the other hand, this function can be directly
related to the generating function P�j ,z��	n=0

� Pn�j�zn. To
do so, one uses the fact that the sets of probabilities Pn�j�
and Fn�j� are linked to each other via the equation �8�

Pn�j� = 	
k=1

n

Fk�j�Pn−k�0�, j � 0. �6�

The discrete convolution on the RHS of Eq. �6� is equivalent
to the product P�j ,z�F�j ,z� in the reciprocal generating
function space. Thus, we have

F�j,z� = 	
n=0

�

Fn�j�zn =
P�j,z�
P�0,z�

, j � 0. �7�

The collision time �n� jT
then follows from Eqs. �5� and �7�:

�n� jT
= 
 �

�z

P�jT,z�
P�0,z� 
z=1

. �8�

B. General case

Let us now extend these results to the general case where
N, d and the synchronicity parameter p take arbitrary values.
The strategy to tackle the problem will be as follows: we
shall not deal with NNC events directly, but rather introduce
a model with a relaxed definition of collision, show its
equivalence to the original one by virtue of the topological
restrictions imposed by the 1D lattice and then compute the
reaction time for the relaxed model. For brevity, let us re-
spectively refer to the original and the relaxed models as
“model I” and “model II” in what follows.

In model II, one assumes that the walkers react instanta-
neously by SSO or when they jump to nearest-neighbor sites,
i.e., by nearest-neighbor occupation �NNO�. The representa-
tion of the system in the comoving frame will consist of a
walker in a lattice with three r sites, as shown in Fig. 2 for a
seven-site system. According to the site numbering intro-
duced in Sec. II, these three r sites will have the coordinates
jT �where the immobile reactant is located�, jT−1 and jT+1.
By definition, the walk will automatically terminate when the
walker lands on any of the three r sites. For the purpose of
computing �n� jT

, it is easy to realize that the system can be
unfolded into an equivalent system with a nonperiodic lattice
by introducing an additional fictitious r site, as shown in Fig.
3 for N=7.

On the other hand, let us again consider the walker-trap
representation of model I depicted in Fig. 1�b� for N=7.
Along the same lines as above, the system can be unfolded
into an equivalent transformed lattice with two trapping sites
T and N−1=6 nontrapping sites �see Fig. 4�. Each site T can
then be replaced with two fictitious r sites, as shown in Fig.
4.2 Thus, we realize that model I embedded in a periodic
lattice with N sites is equivalent to model II in a periodic
lattice with N+2 sites.

Next, let us compute the reaction time �n� jT
for model II.

The situation is now more complex than the one described in
the previous subsection, since we do not know a priori at
which of the three r sites jT−1, jT, or jT+1 the reaction will
occur. Yet, it can still be formulated as a �conditional� first-
passage problem. The key quantity in this case is
Fn�s �s1 ,n1 ;s2 ,n2�, i.e., the probability that a random walker
arrives at site s for the first time at the nth time step after
having visited the sites s1 and s2 exactly n1 and n2 times,
respectively. For a given initial condition with a fixed value
of jT, the mean collision time is now

�n� jT
= 	

n=0

�

nFn�jT�jT − 1,0; jT + 1,0�

+ Fn�jT − 1�jT,0; jT + 1,0� + Fn�jT + 1�jT − 1,0; jT,0�� .

�9�

The RHS of Eq. �9� can again be expressed in terms of the
generating functions

2If the dynamics is purely asynchronous �p=0�, only one r site at
each end will be needed, since jumps by two sites are not possible
in this case

FIG. 2. Representation of model II in the comoving frame.
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�n� jT
=

�

�z
F�jT�jT − 1,0; jT + 1,0;z�

+ F�jT − 1�jT,0; jT + 1,0;z�

+ F�jT + 1�jT − 1,0; jT,0;z���z=1, �10�

where

F�s�s1,n1;s2,n2;z� = 	
n=0

�

Fn�s�s1,n1;s2,n2�zn. �11�

To compute this generating function, let us first observe that

Pn�s�s1,0;s2,0� = 	
k=1

n

Fk�s�s1,0;s2,0�Pn−k�0�s1 − s,0;s2 − s,0�,

s � 0,s1,s2, �12�

where Pn�s �s1 ,0 ;s2 ,0� is the probability that the walker is at
site s at time n conditioned to its not having visited sites s1
and s2 but regardless of any previous visits to s. This prob-
ability must fulfil the initial condition P0�0 �s1−s ,0 ;s2

−s ,0�=1. A simple calculation shows that Eq. �12� leads to
the relation

F�s�s1,0;s2,0;z� =
P�s�s1,0;s2,0;z�

P�0�s1 − s,0;s2 − s,0;z�
, �13�

where

P�s�s1,n1;s2,n2;z� = 	
n=0

�

Pn�s�s1,n1;s2,n2�zn. �14�

This generating function can be computed in terms of
P�s ,z�. For details we refer to the book by Weiss �Ref. �8�,
Chap. 4�. The result for n1=n2=0 is

P�s�s1,0;s2,0;z� = P�s,z� − 	
k=1

2 Dk�0�
D�0�

P�s − sk,z�, s � s1,s2,

�15�

where Dk�0� and D�0� are the following determinants:

D�0� = 
 P�0,z� P�s2 − s1,z�

P�s1 − s2,z� P�0,z�

 , �16�

D1�0� = 
P�s1,z� P�s2 − s1,z�

P�s2,z� P�0,z�

 , �17�

D2�0� = 
 P�0,z� P�s1,z�

P�s1 − s2,z� P�s2,z�

 . �18�

We can now use these expressions to compute explicitly the
mean collision time �n� jT

. From Eqs. �10� and �13� we have

�n� jT
=

�

�z

�P�jT�jT − 1,0; jT + 1,0;z�

P�0�1,0;N − 1,0;z�

+
P�jT − 1�jT,0; jT + 1,0;z�

P�0�1,0;2,0;z�

+
P�jT + 1�jT − 1,0; jT,0;z�
P�0�N − 1,0;N − 2,0;z� �
z=1

�19�

�recall that the arguments of the different generating func-
tions are evaluated modulo N�. Thus, the reaction time can
again be expressed in terms of P�j ,z�. This quantity is easily
computed from the relation

Pn+1�j� = 	
j�=0

N−1

Pn�j��p̂�j − j�� , �20�

where the p̂�j�’s are the single step probabilities for the ran-
dom walk. Next, let us introduce the Fourier transform of the
single step probabilities

p̃�2�l

N
� = 	

k=0

N−1

p̂�k�exp�2�ikl

N
� . �21�

This expression can be used to represent P�j ,z� as follows
�8�:

P�j,z� =
1

N
	
k=0

N−1
exp�2�ikj/N�
1 − zp̃�2�k/N�

, �22�

FIG. 3. Lattice transformation for model II in the comoving
frame. A periodic lattice with three reactive sites is equivalent to a
nonperiodic one with four r sites

FIG. 4. Lattice transformation for the one-walker representation
of model I displayed in Fig. 1�b�.
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where p̃�¯� is computed from the following single step
probabilities:

p̂�2� = p̂�− 2� =
p

4
, p̂�1� = p̂�− 1� =

1 − p

2
, p̂�0� =

p

2
.

�23�

We now have the necessary ingredients to evaluate the
functions P�j1 � j2 ,0 ; j3 ,0 ;z� explicitly and to compute �n� jT
and �n� via the relations �15� and �19�. The initial-condition-
averaged reaction time �n� is obtained by averaging over a
uniform ensemble of all possible nonreactive configurations
characterized by distinct values of jT, i.e.,

�n� �
1

N − 3 	
jT=2

N−2

�n� jT
. �24�

C. Higher order moments

An important advantage of our generating function ap-
proach is that once F�i � j ,0 ;k ,0 ;z� is known, the computa-
tion of higher order moments can be carried out straightfor-
wardly by deriving with respect to z. Indeed, one has

�nm� jT
= �z

�

�z
�m

�F�jT�jT − 1,0; jT + 1,0;z�

+ F�jT − 1�jT,0; jT + 1,0;z�

+ F�jT + 1�jT − 1,0; jT,0;z���z=1. �25�

In particular, the second-order moment

�n2� jT
� 	

n=0

�

n2Fn�jT�jT − 1,0; jT + 1,0�

+ Fn�jT − 1�jT,0; jT + 1,0�

+ Fn�jT + 1�jT − 1,0; jT,0��

= �z
�

�z
�2

�F�jT�jT − 1,0; jT + 1,0;z�

+ F�jT − 1�jT,0; jT + 1,0;z�

+ F�jT + 1�jT − 1,0; jT,0;z���z=1, �26�

the variance

�v� jT
� �n2� jT

− �n� jT
2 , �27�

and its average over the different initial conditions

�v� �
1

N − 3 	
jT=2

N−2

�v� jT
�28�

are easily obtained.

IV. RESULTS

A. Behavior of the reaction time

In order to obtain the results for model I, the lattice size N
must now be decreased by two units in the expressions for

�n� and �v� obtained in the framework of the above formal-
ism. The expressions for �n� as a function of p for small
values of N are displayed in Table I.3 It is seen that these are
ratios of two polynomials whose complexity grows with in-
creasing lattice size. These results are in full agreement with
previous findings for �n� obtained in the framework of a
difference equation approach by the author and co-workers
�3�. Figure 5 displays the �n� plots computed from the ratios
of polynomials given in Table I for small values of the lattice
size N. Let us now summarize their main properties and pro-
vide an intuitive explanation for the observed behavior.

The plots confirm the validity of the expressions �1� and
�2� for the two limiting cases p=0 and p=1. For a fixed
value of p the collision time always increases with the lattice
size. On the other hand, the behavior of �n� as a function of
p is not always monotonic. For N=2 �the smallest physically
interesting lattice� the most effective process is the purely
asynchronous one, and �n� increases monotonically with p.
For N=3 the reaction time does not depend on p. For N
=4,6 ,8 the reaction time decreases with increasing p in a
wide regime of p values, but it then increases again for a
sufficiently large value of p. In contrast, for N=5, 7, and 9
�n� decreases monotonically with p.

These results as well as numerical simulations for larger
lattices confirm the existence of an even-odd effect for N
�3. For odd values of N , �n� decreases monotonically with
p, whereas for even values of N it decreases up to a value
pmin and it increases monotonically beyond this value. The
value pmin is rapidly shifted to one as N increases, and the
curves get closer and closer to the linear law �n�=��1+ p�
�with ��0� predicted by the continuum approximation �3�.
Deviations from this behavior for small lattices, where the
purely synchronous process is not always the most efficient
one, may thus be regarded as an indication of the important
role played by finite-size effects as well as by the spatial
discretization imposed by the lattice.

The even-odd effect described above is reminiscent of the
one observed in the limiting case p=1 �6,19�. In the case p
=0, only one of the reaction channels �SSO� will be open
regardless of the value of N. In contrast, when p=1 one has
two distinct behaviors depending on the parity of N. For odd
values of N, both channels are open. However, for even val-
ues of N reactions occur via a single channel for a given
initial condition, i.e., through SSO when the distance d is
even or by NNC otherwise. Now, when p is no longer strictly
equal to 1 but still close to this value, both reaction channels
should be open, but the above parity effect still holds in a
statistical sense, since NNC �SSO� reactions will be rare for
an even �odd� value of d. Hence the parity-dependent behav-
ior of the curves �n��p� in this regime.

The nonmonotonic behavior of �n� for even values of N
can be explained in terms of a competition between synchro-
nous and asynchronous events. While synchronous transport
is the most efficient mechanism to bring distant walkers in

3For large values of N, the evaluation of the generating function
becomes rather time consuming, except in the limiting cases p=0
and p=1.
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the vicinity of each other, it does not always maximize the
efficiency of the reaction once the walkers are within the
typical interaction radius. In a prereactive configuration with
the walkers sitting at next to nearest-neighbor sites, reaction
within the next step can only take place via a synchronous
event. However, if they are at nearest neighbor sites, reaction
through an asynchronous event becomes possible and it is
then more efficient than reaction through a synchronous
event �the reaction takes place 2 times out of 4 vs 1 time out
of 4�. Thus, if d and N are such that prereactive configura-
tions with contiguous particles are favored, the resulting
competition between synchronous and asynchronous dynam-
ics will lead to an antiresonance of the reaction time �maxi-
mal efficiency� for a value pmin between 0 and 1. The statis-
tical weight of such configurations is apparently stronger in
the case of an even lattice, thus the antiresonance effect still
prevails after averaging over the initial conditions, leading to
the observed nonmonotonic behavior of �n�. In the limit of
large N, the role of diffusional transport becomes increas-
ingly important for the efficiency, thus one has pmin→1. On
the other hand, one can also show that the parity effect is
washed out in the diffusive limit, where the SSO and the
NNC reaction channels become indistinguishable �3�.

B. Behavior of the variance

The analytic expressions for �v� as a function of N in
model I are given in Table II. The p behavior of these func-
tions follows essentially the same law as �n� �see Fig. 6�. For
odd N the behavior is monotonically decreasing, while for
even N a minimum is observed which rapidly shiftes to p
=1 with increasing N. This suggests that the behavior ob-
served for �n� extends to higher order moments; note, how-
ever, that the value pmin is slightly smaller than the one ob-
tained from the �n� curves, except for N=4, where it turns
out to be the same �pmin=2/3�. Thus, �v� and �n� cannot be
simultaneously minimized except in this case.

In the limiting cases p=0 and p=1 it is possible to sim-
plify the expressions of the relevant generating function and
thereby obtain general expressions for �v� for arbitrary lattice
sizes. In the purely asynchronous case one has

�v� =
N�N + 1��N − 2��N + 2�

30
. �29�

This expression is also recovered by taking the average of
Montroll’s original result for the variance over all possible
initial walker-trap separations d �17�. On the other hand, the
case p=1 yields

�v� = �N�N + 1��N + 2��N2 + 2N + 2�/�120�N − 1�� for N even,

�N + 1��N + 3��N2 + 2N − 5�/120 for N odd.
� �30�

The standard deviation ����v� thus turns out to be com-
parable to �n� in both cases. According to Eqs. �29� and �30�,
one has, respectively, ��N2 /�30 and ��N2 / �2�30� for
large N, while Eqs. �1� and �2� give, respectively, �n�
�N2 /6 and �n��N2 /12. The standard deviation and the
mean value remain comparable for intermediate values of p.
This is not surprising in view of the large variability charac-
teristic of first-passage problems.

V. CONCLUSIONS

We have used a generating function approach to compute
the mean reaction time between two walkers performing a
combination of synchronous and asynchronous jumps. The
walkers react via two channels, i.e., same site occupation or
position exchange. The reaction time and its variance display
a different behavior for even and odd lattices, i.e., they be-
have monotonically as a function of the synchronicity pa-

TABLE I. Analytic expressions for �n� for different lattice sizes in model I.

N �n�
2 2/ �2− p�
3 2

4 �10/3��3p−4� / �p2+2p−4�
5 4�2p−5� / �p2−4�
6 �28/5��p2−10p+10� / �p3−4p2−4p+8�
7 �4/3��p2+8p−14� / �p2−2�
8 �12/7��13p3+6p2−126p+112� / ��p−2��p3+6p2−8��
9 10�2p3−5p2−16p+24� / ��p2+2p−4��p2−2p−4��
10 �22/9��7p4−76p3+16p2+288p−240� / �p5−6p4−12p3+32p2+16p−32�
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rameter p for odd lattices and display antiresonances in the
even-lattice case. This behavior has been explained in terms
of a competition between synchronous and asynchronous dy-
namics. While the former favors diffusional transport over
long distances, it may also lead to a decrease of the cross
section once the particles are within the typical interaction
radius, since they may avoid each other more easily when
they hop simultaneously. The even-odd effect tends to vanish
with increasing lattice size and in the continuum limit, since
it is a signature of the discrete nature of the support.

As pointed out in the Introduction, the interest of consid-
ering the effect of synchronicity on the behavior of a given

system arises in a variety of different contexts. A fundamen-
tal motivation is provided by the fact that, while free par-
ticles move simultaneously under the action of a natural law
at the microscopic level of description, in many real systems
the existence of geometric and energetic constraints �e.g.,
activation energies� results in an intrinsic nonzero degree of
asynchrony in the dynamics of the constituents at mesos-
copic time scales. Since in this context asynchronous dynam-
ics can be understood as an expression of such constraints, it
then becomes natural to ask how it affects the efficiency of a
given physical process. In view of our results, the answer
to this question cannot be considered to be straight-

TABLE II. Analytic expressions for �v� for lattice sizes up to N=9 in model I.

N �v�
2 2p / �2− p�2

3 2

4 �2/3��192−316p+152p2−15p3� / �p2+2p−4�2

5 4�−2p3+25p2−80p+84� / �p2−4�2

6 �28/5��−1096p+768p2−206p3+28p4− p5+512� / �8−4p+ p3−4p2�2

7 �4/3��−320p+88p2+8p3+ p4+252� / �p2−2�2

8 �12/7��−13p7+252p6+546p5−4736p4−2184p3+35520p2−50848p+21504� / ��p3

+6p2−8�2�p−2�2�
9 2�−10p7+253p6−816p5−2748p4+11872p3+5552p2−42496p+29568� / ��p2−2p

−4�2�p2+2p−4�2�

FIG. 5. Mean reaction time �n� as a function of p for �a� N
=2, . . . ,5 and �b� N=6, . . . ,9.

FIG. 6. Spatially averaged variance �v� of the encounter time as
a function of p for �a� N=2, . . . ,5 and �b� N=6, . . . ,8.
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forward. Moreover, it may turn out to be rather counterintui-
tive.

Admittedly, the results depend strongly on the specific
definition of the collision rules. Yet, the equivalence between
models I and II suggests that certain features of the observed
behavior might be characteristic of a class of small systems.
Similar antiresonance phenomena in the encounter time
have, e.g., been recently observed in a model for target site
localization of a protein on DNA �20�. On the other hand, the
model shows that classical techniques inspired in first-
passage problems can be successfully used to compute char-
acteristic reaction times for complex processes involving
more than one interaction channel.

Possible extensions of the model include the higher

dimensional case,4 the case of more complex media �21–23�,
and the evaluation of other quantities such as survival prob-
abilities �24,25�, nearest-neighbor distance to the trap �26�
and concentration decays �27� in the framework of the many-
particle problem �28,29� or more ellaborate reaction schemes
�30,31�.
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